Quad Differential LVECL／LVPECL Buffer／Receivers

Abstract

General Description The MAX9400／MAX9402／MAX9403／MAX9405 are extremely fast，low－skew quad LVECL／ECL or LVPECL／ PECL buffer／receivers designed for high－speed data and clock driver applications．These devices feature an ultra－low propagation delay of 335ps and channel－to－ channel skew of 16ps in asynchronous mode with 86 mA supply current． The four channels can be operated synchronously with an external clock，or in asynchronous mode determined by the state of the SEL input．An enable input provides the ability to force all the outputs to a differential low state． A variety of input and output terminations are offered for maximum design flexibility．The MAX9400 has open inputs and open emitter outputs．The MAX9402 has open inputs and 50Ω series outputs．The MAX9403 has 100Ω differential input impedance and open emitter outputs．The MAX9405 has 100Ω differential input impedance and 50Ω series outputs． These devices operate with a supply voltage of（VCC－ $\left.\mathrm{V}_{\mathrm{EE}}\right)=2.375 \mathrm{~V}$ to 5.5 V ，and are specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．These devices are offered in space－saving 32 －pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP and 32 －lead $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN packages．

Applications

Data and Clock Driver and Buffer
Central Office Backplane Clock Distribution
DSLAM Backplane
Base Station
ATE

Functional Diagram appears at end of data sheet．

Features
－400mV Differential Output at 3．0GHz Data Rate
－335ps Propagation Delay in Asynchronous Mode
－8ps Channel－to－Channel Skew in Synchronous Mode
－Integrated 50 Outputs（MAX9402／MAX9405）
－Integrated 100Ω Inputs（MAX9403／MAX9405）
－Synchronous／Asynchronous Operation

Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	DATA INPUT	OUTPUT
MAX9400EHJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	Open	Open	
MAX9400EGJ＊$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN	Open	Open	
MAX9402EHJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	Open	50Ω	
MAX9402EGJ＊$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN	Open	50Ω	
MAX9403EHJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	100Ω	Open	
MAX9403EGJ＊$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN	100Ω	Open	
MAX9405EHJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	100Ω	50Ω	
MAX9405EGJ＊$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN	100Ω	50Ω	

＊Future product－contact factory for availability．

Pin Configurations

Quad Differential LVECL/LVPECL Buffer/Receivers

ABSOLUTE MAXIMUM RATINGS	
Differential Input Voltage	$\pm 3 \mathrm{~V}$
Continuous Output Current	50 mA
Surge Output Current.	100 m
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
$32-P \mathrm{in} 5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP	
(derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	761 mW
32-Lead $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN	
(derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	. 7
Junction-to-Ambient Thermal Resistance in Still Air	
32 -Pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP	+ $105^{\circ} \mathrm{C} / \mathrm{W}$
32-Lead $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN	$+47^{\circ} \mathrm{C} / \mathrm{W}$

Junction-to-Ambient Thermal Resistance with 500LFPM Airflow	
$32-$ Pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP	
Junction-to-Case Thermal Resistance	
32-Pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP................................... $+25^{\circ} \mathrm{C} / \mathrm{W}$	
32-Lead 5mm x 5mm QFN $+2^{\circ} \mathrm{C} / \mathrm{W}$	
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
ESD Protection	
Human Body Model (Inputs and Outputs)	2 kV

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{C C}-\mathrm{V}_{E E}=2.375 \mathrm{~V}$ to 5.5 V , MAX9400/MAX9403 outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{C C}-2.0 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=$ $3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-0.9 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
INPUTS (IN_, $\overline{\text { IN}}$, CLK, $\overline{\text { CLK }}$, EN, $\overline{\text { EN, }}$, SEL, $\overline{\text { SEL }})$							
Differential Input High Voltage	VIHD	Figure 1		$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.4 \end{gathered}$		V_{CC}	V
Differential Input Low Voltage	VILD	Figure 1		VEE		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.2 \end{gathered}$	V
Differential Input Voltage	VID	Figure 1	$V_{C C}-V_{E E}<+3.0 \mathrm{~V}$	0.2		$\begin{gathered} V_{C C}- \\ V_{\mathrm{EE}} \end{gathered}$	V
			$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{EE}} \geq+3.0 \mathrm{~V}$	0.2		3.0	
Input Current	$\mathrm{IIH}_{\mathrm{I}} \mathrm{I} / \mathrm{L}$	$\begin{aligned} & \text { MAX9400/ } \\ & \text { MAX9402 } \end{aligned}$	EN, $\overline{E N}, S E L, \overline{S E L}, I N_{-}, I \overline{N_{-}}$, CLK, or $\overline{\mathrm{CLK}}=\mathrm{V}_{\text {IHD }}$ or $\mathrm{V}_{\text {ILD }}$	-10		25	$\mu \mathrm{A}$
		MAX9403/ MAX9405	EN, $\overline{\mathrm{EN}}, \mathrm{SEL}, \overline{\mathrm{SEL}}, \mathrm{CLK}$, or $\overline{\mathrm{CLK}}=\mathrm{V}_{\text {IHD }}$ or $\mathrm{V}_{\text {ILD }}$	-10		25	
Differential Input Resistance	RIN	MAX9403/MAX9405		86		114	Ω
OUTPUTS (OUT_, $\mathbf{O U T}_{-}$)							
Differential Output Voltage	VOH - VOL	Figure 1		600	660		mV
Output Common-Mode Voltage	Vocm	Figure 1		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.5 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.25 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.1 \end{gathered}$	V
Internal Current Source	ISINK	MAX9402/MAX9405, Figure 2		6.5	8.3	10	mA
Output Impedance	Rout	MAX9402/MAX9405, Figure 2		40	50	60	Ω
POWER SUPPLY							
Supply Current	Iee	MAX9402/MAX9405			150	180	mA
		MAX9400/MAX9403			86	118	

Quad Differential LVECL/LVPECL Buffer/Receivers

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.375 \mathrm{~V}$ to 5.5 V , outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$, enabled, $\mathrm{CLK}=3.2 \mathrm{GHz}, \mathrm{fIN}=1.6 \mathrm{GHz}$, input transition time $=125$ ps $(20 \%$ to $80 \%), V_{I H D}=V_{E E}+1.2 \mathrm{~V}$ to $V_{C C}, V_{I L D}=V_{E E}$ to $V_{C C}-0.2 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.2 \mathrm{~V}$ to smaller of IVCC $-\mathrm{V}_{E E}$ or 3 V , unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-0.9 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}} 1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 4)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
IN-to-OUT Differential Propagation Delay	tPLH1 tPHL1	MAX9400/MAX9403	SEL = high, Figure 3	237	335	437	ps
		MAX9402/MAX9405		237	335	437	
CLK-to-OUT Differential Propagation Delay	$\begin{aligned} & \text { tPLH2 } \\ & \text { tPHL2 } \end{aligned}$	MAX9400/MAX9403	SEL = low, Figure 4	397	475	597	ps
		MAX9402/MAX9405		397	475	597	
IN-to-OUT Channel-to-Channel Skew (Note 5)	tSKD1	SEL = high			16	80	ps
CLK-to-OUT Channel-toChannel Skew (Note 5)	tSKD2	SEL = low			8	55	ps
Maximum Clock Frequency	fCLK(MAX)	$\mathrm{V}_{\mathrm{OH}}-\mathrm{VOL}_{\text {OL }} \geq 500 \mathrm{mV}$, SEL $=$ low		3.0			GHz
Maximum Data Frequency	fin(maX)	$\mathrm{V}_{\mathrm{OH}}-\mathrm{VOL}^{\text {l }}$ 400mV, SEL $=$ high		2			GHZ
Added Random Jitter (Note 6)	tr J	$\mathrm{SEL}=$ low, f $\mathrm{fLLK}=3.0 \mathrm{GHz}$ clock, $\mathrm{f} \mathrm{IN}=1.5 \mathrm{GHz}$			0.64	1.3	ps(RMS)
		SEL $=$ high, fiN = 2GHz			0.74	1.5	
Added Deterministic Jitter (Note 6)	tDJ	$\begin{aligned} & \text { SEL }=\text { low, fCLK }=3.0 \mathrm{GHz}, \mathrm{IN}=3.0 \mathrm{Gbps} \\ & 2^{23}-1 \text { PRBS pattern } \end{aligned}$			17	30	$\mathrm{ps}(\mathrm{P}-\mathrm{P})$
		SEL = high, $\operatorname{IN}=2.0 \mathrm{Gbps} 2^{23}-1$ PRBS pattern			40	55	
IN-to-CLK Setup Time	ts	Figure 4		80			ps
CLK-to-IN Hold Time	th	Figure 4		80			ps
Output Rise Time	tR	Figure 3			80	120	ps
Output Fall Time	$\mathrm{tF}_{\text {F }}$	Figure 3			80	120	ps
Propagation Delay Temperature Coefficient	$\begin{gathered} \Delta \mathrm{tpD} / \\ \Delta \mathrm{T} \end{gathered}$				0.2	1	ps/ ${ }^{\circ} \mathrm{C}$

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at $+25^{\circ} \mathrm{C}$. DC limits are guaranteed by design and characterization over the full operating temperature range.
Note 4: Guaranteed by design and characterization. Limits are set to ± 6 sigma.
Note 5: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 6: Device jitter added to the input signal.

Quad Differential LVECL/LVPECL Buffer/Receivers

($V_{C C}-V_{E E}=3.3 \mathrm{~V}, \mathrm{MAX9400}$, outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$, enabled, $\mathrm{SEL}=$ high, $\mathrm{CLK}=2.0 \mathrm{GHz}, \mathrm{fIN}=1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{I H D}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Quad Differential LVECL/LVPECL
 Buffer/Receivers

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} \text { 1, 8,11, } \\ 17,24,30 \end{gathered}$	VCC	Positive Supply Voltage. Bypass V_{CC} to $\mathrm{V}_{\text {EE }}$ with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	SEL	Noninverting Differential Select Input. Setting SEL = high and $\overline{\text { SEL }}=$ low (differential high) enables all four channels to operate asynchronously. Setting SEL = low and $\overline{\text { SEL }}=$ high (differential low) enables all four channels to operate in synchronous mode.
3	$\overline{\text { SEL }}$	Inverting Differential Select Input
4	CLK	Noninverting Differential Clock Input
5	$\overline{C L K}$	Inverting Differential Clock Input. A rising edge on CLK (and falling on $\overline{C L K}$) transfers data from the inputs to the outputs when SEL = low.
6	EN	Noninverting Differential Output Enable Input. Setting EN = high and $\overline{\mathrm{EN}}=$ low (differential high) enables the outputs. Setting $\mathrm{EN}=$ low and $\overline{\mathrm{EN}}=$ high (differential low) drives outputs low.
7	$\overline{\mathrm{EN}}$	Inverting Differential Output Enable Input
9	IN3	Noninverting Differential Input 3
10	$\overline{\mathrm{IN} 3}$	Inverting Differential Input 3
12	OUT3	Inverting Differential Output 3
13	OUT3	Noninverting Differential Output 3
$\begin{aligned} & 14,20, \\ & 21,27 \end{aligned}$	VEE	Negative Supply Voltage
15	IN2	Noninverting Differential Input 2
16	$\overline{\mathrm{IN} 2}$	Inverting Differential Input 2
18	OUT2	Inverting Differential Output 2
19	OUT2	Noninverting Differential Output 2
22	OUT1	Noninverting Differential Output 1
23	OUT1	Inverting Differential Output 1
25	$\overline{\mathrm{N} 1}$	Inverting Differential Input 1
26	IN1	Noninverting Differential Input 1
28	OUTO	Noninverting Differential Output 0
29	OUTO	Inverting Differential Output 0
31	INO	Inverting Differential Input 0
32	INO	Noninverting Differential Input 0
-	EP	Exposed Paddle (MAX940_EGJ only). Connected to VEE internally. See package dimensions.

Quad Differential LVECL/LVPECL Buffer/Receivers

Abstract

Detailed Description The MAX9400/MAX9402/MAX9403/MAX9405 are extremely fast, low-skew quad LVECL/ECL or LVPECL/ PECL buffer/receivers designed for high-speed data and clock driver applications. The devices feature an ultra-low propagation delay of 335ps and channel-tochannel skew of 16ps in asynchronous mode with an 86mA supply current. The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state. A variety of input and output terminations are offered for maximum design flexibility. The MAX9400 has open inputs and open-emitter outputs. The MAX9402 has open inputs and 50Ω series outputs. The MAX9403 has 100Ω differential input impedance and open-emitter outputs. The MAX9405 has 100Ω differential input impedance and 50Ω series outputs.

Supply Voltage

 The MAX9400/MAX9402/MAX9403/MAX9405 are designed for operation with a single supply. Using a single negative supply of $\mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to $-5.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=\right.$ ground $)$ yields LVECL/ECL-compatible input and output levels. Using a single positive supply of $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 5.5 V (VEE = ground) yields LVPECL/PECL input and output levels.
Data Inputs

The MAX9400/MAX9402 have open inputs and require external termination. The MAX9403/MAX9405 have integrated 100Ω differential input termination resistors from IN_ to $\overline{\mathrm{N}}_{-}$, reducing external component count.

Outputs

The MAX9402/MAX9405 have internal 50Ω series output termination resistors and 8 mA internal pulldown current sources. Using integrated resistors reduces external component count.

The MAX9400/MAX9403 have open-emitter outputs. An external termination is required. See the Output Termination section.

Enable

Setting EN = high and $\overline{\mathrm{EN}}=$ low enables the device. Setting EN = low and $\overline{E N}=$ high forces the outputs to a differential low, and all changes on CLK, SEL, and IN_ are ignored.

Asynchronous Operation

Setting SEL $=$ high and $\overline{\text { SEL }}=$ low enables the four channels to operate independently as buffer/receivers.

The CLK signal is ignored in this mode. In asynchronous mode, the CLK signal should be set to either a logic low or high state to minimize noise coupling.

Synchronous Operation

Setting SEL = low and SEL = high enables all four channels to operate in synchronous mode. In this mode, buffered inputs are clocked into flip-flops simultaneously on the rising edge of the differential clock input (CLK and $\overline{C L K}$).

Differential Signal Input Limit

The maximum signal magnitude of the differential inputs is $\mathrm{VCC}_{\text {C }}$ - VEE or 3V, whichever is less.

Applications Information

Input Bias

Unused inputs should be biased or driven as shown in Figure 5. This avoids noise coupling that might cause toggling at the unused outputs.

Output Termination

Terminate open-emitter outputs (MAX9400/MAX9403) through 50Ω to $\mathrm{VCC}-2 \mathrm{~V}$ or use an equivalent Thevenin termination. Terminate both outputs and use identical termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if OUT_ is used as a single-ended output, terminate both OUT_ and $\overline{O U T}$

Ensure that the output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the device's total thermal limits should be observed.

Power-Supply Bypassing

Adequate power-supply bypassing is necessary to maximize the performance and noise immunity. Bypass $V_{C C}$ to $V_{E E}$ with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors as close to the device as possible with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device pins. Use multiple bypass vias for connection to minimize inductance.

Circuit Board Traces

 Input and output trace characteristics affect the performance of the MAX9400/MAX9402/MAX9403/MAX9405. Connect each of the inputs and outputs to a 50Ω characteristic impedance trace. Avoid discontinuities in differential impedance and maximize common-mode noise immunity by maintaining the distance between differential traces and avoid sharp corners. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω char-
Quad Differential LVECL/LVPECL
 Buffer/Receivers

acteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

TRANSISTOR COUNT: 713
PROCESS: Bipolar

Figure 1. Input and Output Voltage Definitions

Figure 2. Input and Output Configurations

Quad Differential LVECL/LVPECL Buffer/Receivers

Figure 3. IN-to-OUT Propagation Delay and Transition Timing Diagram

Figure 4. CLK-to-OUT Propagation Delay Timing Diagram

Quad Differential LVECL/LVPECL Buffer/Receivers

Figure 5. Input Bias Circuits for Unused Inputs

Pin Configurations (continued)

Quad Differential LVECL/LVPECL Buffer/Receivers

Quad Differential LVECL/LVPECL
 Buffer/Receivers

Package Information

NOTESI

1. ALL DIMENSIINING AND TOLERANCING CONFORM TD ANSI Y14.5-1982.

DATUM PLANE EH- IS LICATED AT MOLD PARTING LINE AND
CIINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY
BOTTOM OF PARTING LINE.
DIMENSIINS DI AND EI DI NDT INCLUDE MDLD PROTRUSION
ALI
ALLDWABLE MOLD PROTRUSION IS 0.254 MM ON DI AND EI
4. THE TIP DF PACKAGE IS SMALLER THAN THE BITTIM DF PACKAGE

BY 0.15 MILLIMETERS.
DIMENSION b DIES NDT INCLUDE DAMBAR PROTRUSIIN. ALLDWABLE DAMBAR PRDTRUSIDN SHALL BE 0.08 MM TDTAL
b DIMENSIIN AT MAXIMUM MATERIAL
7. THIS OUTLINE CONFIRMS TO JEDEC PUBLICATION 95, REGISTRATION
8. LEADS SHALL BE CDPLANAR WITHIN .004 INCH.

	JEDEC VARIATIUNS dimensians in millimeters	
	AA	
	$5 \times 5 \times 1.0$ MM	
	MIN.	MAX.
A	${ }^{+}$	1.20
A_{1}	0.05	0.15
A_{2}	0.95	1.05
D	7.00 BSC .	
D_{1}	5.00 BSC.	
E	7.00 BSC.	
E_{1}	5.00 BSC.	
L	0.45	0.75
M	0.15 x	
N	32	
-	0.50 BSC.	
b	0.17	0.27
bl	0.17	0.23

Quad Differential LVECL/LVPECL Buffer/Receivers

Quad Differential LVECL/LVPECL Buffer/Receivers

NOTES:

1. DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM (. 012 INCHES MAXIMUM)
2. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
3. N is the number of terminals.

Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION \&
Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.
4. dimension b apples to plated terminal and is measured BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.
5. THE PIN \#1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/ LASER MARKED.
6.

EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
7. ALL DIMENSIONS ARE IN MILLIMETERS.
8. PACKAGE WARPAGE MAX 0.05 mm .
9. APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING.

$\stackrel{s}{\text { S }}$	COMMON DIMENSIONS			
O_{L}	MIN.	NOM	MAX.	
	0.80	0.90	1.00	
A1	0.00	0.01	0.05	
A2	0.00	0.65	1.00	
A3		20 R		
D		00 B		
D1		75		
E		00 B		
E1		75 B		
θ	0°	-	12°	
P	0		0.60	
D2	1.25	-	3.25	
E2	1.25	-	3.25	

10. MEETS JEDEC MO220.
11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) AND TO SAW SINGULATION (STRAIGHT SIDES) QFN STYLES.

${ }^{4}$	PITCH VARIATION B					PITCH VARIATION B			$\begin{array}{\|l\|l\|} \hline N_{T_{E}} & y_{i}^{s} \\ \hline \end{array}$		PITCH VARIATION C			$\begin{array}{\|l\|l\|} \hline N_{0} \\ \tau_{\varepsilon} & r_{i}^{\prime} \\ \hline \end{array}$		PITCH VARIATION D			${ }^{{ }^{\circ}{ }_{\text {T }} \text { E }}$
-	MIN. 0.80 BSC .				®	0.65 BSC				-	O. 0.50 BSC .				©	MIN. 0.50 BSC			
N	16			3	N	5			3	N		28		3	N		32		3
Nd				3	Nd				3	Nd	28			3	Nd	3			3
Ne	4			3	Ne		5		3	Ne		7		3	Ne	8			3
L	0.35	0.55	0.75			0.35	0.55	0.75			0.35	0.55	0.75		L	0.30	0.40	0.50	
b	0.28	0.33	0.40	4	b	0.23	0.28	0.35	4	b	0.18	0.23	0.30	4	b	0.18	0.23	0.30	4

[^0] implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are

